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ACTION Detection®.



Action Classification

Video

Classifier

Swing Dancing 0.52
Salsa Dancing 0.39
Holding Hands 0.03
Walking 0.01




Action Classification

—————————————
-

Swing Dancing 0.52

CLASS SCORE

Salsa Dancing 0.39

Video

Ccl ifi
B Holding Hands 0.03

Walking 0.01

- ——————————————————

No action Action Detected: Long Jump No action

iStarl iEnd

 — - —— —— —————————— ——— — —————— ———— —————————— ———— — ——— ————————— ——— — ——— — — ———

v

Al A ——



Recap:

Combining Multiple
Modalities for HAR
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STEPS in Action Detection “__
Step-1 |

/ Feature Extraction:\

-- Use pre-trained
models (e.g., ResNet,
13D, or SlowFast
networks) to extract
meaningful
spatio-temporal
features.

-- Features can include
RGB (appearance) and
multiple modalities like
optical flow, pose, | =====

\iepth etc. /




STEPS in Action Detection

/ Feature Extraction:\ /Proposal Generation:\

-- Sliding Windows:
-- Use pre-trained video is divided into Training - Test Data set
models (e.g., ResNet, overlapping or pS'dgledw .................
13D, or SlowFast nc.)n-overlappmg X | x [ x [ x. X.t.XL
networks) to extract windows. ] ——] . L. O
meaningful o Siiding Window |
spatio-temporal Each window is treated X | X | X X | X5
features. as a Candidate for T e TN ey S ....... 1 ....................................... :
-- Features can include containing an action. T b S———
RGB (appearance) and X, | X, | X, [ol Xy | Xy| X)X,
multiple modalities like Theseareusualy |
optical flow, pose, fixed-length windows

\gepth etc. / \(\&or 16,0r 64 frames)/




STEPS in Action Detection

Step-1

/ Feature Extraction:\

-- Use pre-trained
models (e.g., ResNet,
13D, or SlowFast
networks) to extract
meaningful
spatio-temporal
features.

-- Features can include
RGB (appearance) and
multiple modalities like

optical flow, pose,

\gepth etc. /

Step-2

/Proposal Generation:\

-- Temporal Proposal or
Anchors: can predict
temporal regions where
actions might occur.

These are trained using
labeled data and learn
to identify proposals
based on patterns in
the video.

- /

Time

Feature

Extracior

Baseline

Video p
Feature Proposals

Temporal Sas



STEPS in Action Detection

Step-1 Step-2 >tep-3

/ Feature Extraction:\ /Proposal Generation:\ Kl'emporal Locallzatlon:\

- Temporal Proposal or -- Boundary Refinement
-- Use pre-trained Anchors: can predict Prc?posals often need o—eo
models (e.g., ResNet, temporal regions where adjustment to match the *e—o
13D, or SlowFast actions might occur. groun.d-truth start and ® ®
networks) to extract end times. Anchor
meaningful These are trained using o l adjust
spatio-temporal labeled data and learn - CI.a\ssmcatlon
features. to identify proposals As§|gn each pr.oposal an o-o—> “throw”
-- Features can include based on patterns in actlo.n.labe.l using o»—<90 "‘throw”
RGB (appearance) and the video. classifiers like fully @ ¢ »throw”
multiple modalities like connected layer

optical flow, pose,
| depthetc VAN AN /




Important STEPS in Action
Detection

Short Long

Multi-scale Temporal Modeling :
® Actions occur at different durations (short gestures vs.
long activities). Multi-scale features or temporal _ o n - -
. ] . . Open fridge Take food =~ Close fridge Put on table Pour water Make sandwich
pyramid networks can handle this variability. Work at tabe

Open fridge

]

Take food| NN

. . . . Close fndge —_—

e Capture dependencies and relationships across video Put o tible —
Cook

. . ——————— ——
frames to better classify actions. Dt —
—

Make sandwich




Important STEPS in Action
Detection

Short Long

Temporal Attention :

® Focus on discriminative parts of the video (important

frames) using attention mechanisms to improve
classification accuracy.

Open fridge Take food =~ Close fridge Put on table Pour water Make sandwich

Work at table
Open fridge |
Take food|
Close fnidge —
Put on table =
Cook

Pour into cup

I
[
Make:paniivick —




Important STEPS in Action

Detection

Temporal Attention :

® Focus on discriminative parts of the video (important
frames) using attention mechanisms to improve
classification accuracy.

Methods , Excited!

Open fridge |

]
Close fndge —
—————1

Pour into cup I ———

Let’s See Few TOP Action Detection
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Leverages dilated convolutions and attention mechanisms
to handle varying action durations and refine predictions.
Pyramid dilated convolutions are used to capture features at
multiple temporal scales.

By varying the dilation rates in convolutional layers, PDAN
can effectively expand the receptive field, ensuring that both
short-term and long-term temporal dependencies are
captured.

This helps in detecting actions of varying durations (e.g.,
short gestures vs. prolonged activities).

PDAN integrates attention mechanisms to focus on
important temporal regions within the video.

Global Attention: Identifies key frames across the entire
video

Local Attention: Focuses on refining details within action
boundaries



MS-TCT:
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® Integrates multi-scale temporal modeling and transformer-based attention mechanisms to enhance action localization
and classification. It builds on the strengths of temporal convolutional networks (TCNs) and transformers, combining them

in a unified architecture.



MS-TCT: Key Components

Multi-Scale Temporal Convolutions:

e Uses layers with increasing kernel sizes and dilation rates to extract temporal
features at various resolutions.
e Efficiently captures actions of different durations without significantly

increasing computational cost. émporal Global-Local Relational Block\

Merge X B
Temporal Transformers: Block Global Local

® Inspired by the success of TCNs in temporal modeling.

e Employs self-attention to model global temporal dependencies.

e Allows the framework to capture long-range contextual information, which

1C
Linear
]
1C
1
Linear

Attention
F—

Multi-head

is critical for detecting complex or overlapping actions.

Multi-Scale Feature Aggregation: & /

® Aggregates features from different temporal scales to create a unified

representation.
® Ensures that both short-term and long-term patterns are included in the
final predictions.



Full Supervised

Label: Long Jump
Time Start:1.5s Time End:2.3s

o .
Weakly Supervised

Label: Long Jump

Frame-by-Frame Annotations required
e Time Consuming
e Boundary Region Could be prone to error

Video-level Annotations required
e Easy to Obtain
e Less mistakes 1in annotation

\ J

None

- J




Anomaly Detection ? . _

Anormaly Score
— Thresold == Score Ground truth
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Real-world Anomalies? -
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Is it that easy to detect
real-world anomalies? .

e No Temporal Annotation in Videos e Human Centric fine-grained Anomalies

[Supervised]
Temporal Annotations

Video-level Annotations
[Weakly Supervised]

e Sparsity of Anomaly




Our Two Recent Works

CVPR 2025 Submission #11647. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Just Dance with 7!
A Poly-modal Inductor for Weakly-supervised Video Anomaly Detection

Anonymous CVPR submission

Under review as a conference paper at ICLR 2025

MIXTURE OF EXPERTS GUIDED BY GAUSSIAN SPLAT-
TERS MATTERS: A NEW APPROACH TO WEAKLY-
SUPERVISED VIDEO ANOMALY DETECTION

Anonymous authors
Paper under double-blind review




CVPR’25 ACCEPTED

Just Dance with 11!

A Poly-modal Inductor for Weakly-
supervised Video Anomaly Detection




Motivation

e RGB only features are not sufficiently distinctive enough to distinguish complex anomalies Ilke
shoplifting and visually similar normal events. |

e Towards robust complex real-world anomaly detection, it is essential to augment RGB with additional
modalities. RGE

e But how many additional modalities?

Arrest Subtle & Sharp Cue (First, policemen argue with a suspect, then arrest him by force)

(a) Complex real-world anomalies with multi-modal saliencies



Motivation

® RGB only features are not sufficiently distinctive enough to distinguish complex anomalies like
shoplifting and visually similar normal events. \ 'Y

e Towards robust complex real-world anomaly detection, it is essential to augment RGB with additional

modalities.

e But how many additional modalities?
m ONE

Arrest: subtle & Sharp Cue (First, policemen argue with a suspect, then arrest him by force)

(a) Complex real-world anomalies with multi-modal saliencies



Motivation

e RGB only features are not sufficiently distinctive enough to distinguish complex anomalies like
N

shoplifting and visually similar normal events. Rl

e Towards robust complex real-world anomaly detection, it is essential to augment RGB with additibnal

modalities. RGB Pose Depth

e But how many additional modalities?
m TWO

Arrest: subtle & Sharp Cue (First, policemen argue with a suspect, then arrest him by force)

(a) Complex real-world anomalies with multi-modal saliencies



Motivation

® RGB only features are not sufficiently distinctive enough to distinguish complex anomalies like
shoplifting and visually similar normal events. \Q\\

— g

e Towards robust complex real-world anomaly detection, it is essential to augment RGB with addit\ibnavl_

modalities. FanoplIc
GB Pose Depth | Masks _

e But how many additional modalities?
m THREE
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Arrest: subtle & Sharp Cue (First, policemen argue with a suspect, then arrest him by force)

(a) Complex real-world anomalies with multi-modal saliencies



Motivation

® RGB only features are not sufficiently distinctive enough to distinguish complex anomalies like
shoplifting and visually similar normal events. \Q\\
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e Towards robust complex real-world anomaly detection, it is essential to augment RGB with addit\ibnavl_

modalities. FanoplIc
GB Pose Depth | Masks _
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Arrest: subtle & Sharp Cue (First, policemen argue with a suspect, then arrest him by force)

(a) Complex real-world anomalies with multi-modal saliencies



Motivation

® RGB only features are not sufficiently distinctive enough to distinguish complex anomalies like

W

shoplifting and visually similar normal events. R

— g

e Towards robust complex real-world anomaly detection, it is essential to augment RGB with addit\ibnavl_

modalities. Fanopuc . . o

GB Pose Depth | TR soneedisindl Text
A photo of

“Abuse”
A photo of
“Shoplift”

e But how many additional modalities?
m FIVE

A A photo of

. “Arrest”

s . X Y c

! - ‘. ( - S ol '

‘ o ’F:‘\ gt
atl o

We will see in this work !! — WL &% WL | |
Arrest: subtle & Sharp Cue (First, policemen argue with a suspect, then arrest him by force)

(a) Complex real-world anomalies with multi-modal saliencies



Where is the DIifficulties?

IMAGEBIND: One Embedding Space To Bind Them All

Rohit Girdhar* Alaaeldin EI-Nouby* Zhuang Liu Mannat Singh
Kalyan Vasudev Alwala Armand Joulin Ishan Misra*

FAIR, Meta Al

https://facebookresearch.github.io/ImageBind

e Difficulties arises due to:
m Limited Data, Limited Supervision
m Disparity Among Modalities
m Noise and Redundant Information

m Increased Inference Overhead



What is our IDEA?

Solid Arrow: Training + Inference Dashed Arrow: Only Training

| Multi-Modality Estimators | Previous
i Methods
Pose Depth Text OpticalFlow Pano. Mask
RGB ® ! VAD b
Encoder Time (T)

llllllllll

Pose <l 'Pano. Mask
AN
Depth OptzculFlow

Multi-Modality Estimators

| Pose| Depth Text OpticalFlow Pano. Mask

AGround Truth for
| Pseudo Modality

| Generation
ot

Our PI-VAD .°

(b) Key difference between previous methods and our PI-VAD

What is the best strategy to overcome:
® Inference Overhead: Generate Pseudo Modalities

e Noise and Redundancy: Task aware Generation is
Necessary

e Disparity Among Modalities: Dissociatively binding
each modality to RGB via a contrastive loss.

e Limited Data and Supervision: Follow a Teacher and
Student Paradigm (Teacher supervise student network
via Pseudo label)



Proposed PI-VAD

e Core of PI-VAD is a Poly-modal Inductor

e PI-VAD follows Teacher-student design paradigm
o Teacher and Student network has Identical
Functional blocks, just that
o Teacher is Pre-trained RGB Backbone
o Student is Random initialized

e Poly-modal Inductor operates between the Teacher
and Student, can be included at any Stage
o Early Stage
O Later Stage

e Teacher guides the poly-modal Inductor by providing
the coarse anomaly representation

e Thanks to Poly-modal inductor Student learn the
fine-grained anomaly Representation

=% Pre-trained Teacher

Larr

(1 5o T
Pose .’ Cross-Modal Induction \l
N ; L1
=~ | align
G\ Text ) o [’distzl
O p— e
- Motion | y
= |
O Pan. Mask '
Q@ IFA F A /A ,
Q.
2 T F*eR TxD;
// t Pseudo-Modality Fre €R TxD;
'~ Generation
T Ty B Poly-modal
" e [_.;l,TxDi?
N ER Inductor /
—_— 4
ee o Block-i Blﬁ‘;k' —»eee—» VAD
R

& Random Intialized Student

—>  Extraction— Induction
(a) Overview of w-VAD



Poly-modal Inductor

Modalities Ground Truth
e Two Functional Modules of Poly-modal Inductor Pose [Deptl} Text [Motion| Pan. Mask PMG
ep: €D: €t €0: €p:
Ny CMI
o PMG (Pseudo Modality Generation) e Lerwg_ _______ :
[E ] emeeen A A A A A
| Pose —3}- : - : :
. . y : : : . — Teacher RGB
o CMI (Cross Modality Induction) ép |n T — : | [Amhelp"'”’ ]
oS | —
e PMG generates modality specific prototype s | €t : |2 S : Transformer ;
. . . = - . 17
embeddings directly from latent RGB embedding. B 2 "@’ et f* : : Y
A ‘ - 3 . : s
_,!E_) e | : ’% Cdmuz
e PMG learns the anomaly relevant synthetic dg P - - ] E3 i
approximation of actual modalities. _,(E_, M f‘ ' J{ :
o |7 Pan. Mask ™ : - : VW | | Jereseseess
. e : : fs
e CMI aligns uncoupled modalities within a unified, T AR, S e _—_—
. :Lalign JL .»‘v-_~o."';"'5| . InfeNCE| ¢ f € ’QT"D‘
RGB-anchored embedding space. Y A :
- ..  StudentRGB
e CMI facilitates the semantic alighment between the { ; :"RT)(D‘_ }

multi-modal encodings from PMG and the RGB
embeddings of the student while ensuring that the
alignment is pertinent to WSVAD.

(b) Poly-modal Inductor (PI)



PI-VAD Optimization
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Enough Action/Anomaly Detection !!
Let's See the Future Action/Anomaly



Action Anticipation

What is Action Anticipation?

Why is it challenging?

e Partial observations. Observation Time T, Anticipation Time .,
o . , , ,
° AmbIQUIty in aCtlonS' | PputBread Open Butter Grab Knife : Get Butter :
e Temporal variability. : . :
' ¥/

e Uncertainty between observation and future event e B - ' - .
. : :
| I |
l £ 7T TR wm e v em e em Y- ' l |
1| f f AR L AR |

Applications BRI I T T T N T S m—— SR | |

e Autonomous vehicles: Predict pedestrian or driver behavior.

e Surveillance: Identify potentially harmful actions early.

e Healthcare: Anticipate falls or movements in elderly care.

e Human-robot interaction: React to human actions in collaborative settings.

Predicting future human actions from partial or ongoing observations.

' P & ot g P Tg




Action Classification Action Anticipation

Swing Dancing 0.52

Salsa Dancing 0.39

Holding Hands 0.03 TS 2R (TO + Ta) TS == Ta TS

Walking 0.01
l Observation Time T, Anticipation Time T, |
[ J

: Put Bread Open Butter Grab Knife : Get Butter :
[ I |
l | . |
| L - - i
[ I ‘ l
| I l
l ', ......................................... l ; '
| f f f S NN |
| Vel i m i aci aiaim i aimimimimimimimimiams - - i |




STEPS in Action Anticipation.__

/ Observation Frames\

Feature Extraction:

-- Use pre-trained
models (e.g., ResNet,
13D, or SlowFast
networks) to extract
meaningful
spatio-temporal
features.

-- Features can include
RGB (appearance) and
multiple modalities like
optical flow, pose,
depth etc.

" /




STEPS in Action Anticipation

Step-1

/ Observation Frames\

Feature Extraction:

-- Use pre-trained
models (e.g., ResNet,
13D, or SlowFast
networks) to extract
meaningful
spatio-temporal
features.

-- Features can include
RGB (appearance) and
multiple modalities like
optical flow, pose,
depth etc.

Step-2
/ Past Encoder: \

--With LSTM, GRU, TCN
or Transformers
encode the
spatio-temporal
dynamics of the past
observation.

" /

" /

Unobserved Future —

Past
Encoder

) . -

-

)



STEPS in Action Anticipation

Step-1

/ Observation Frames\

Feature Extraction:

-- Use pre-trained
models (e.g., ResNet,
13D, or SlowFast
networks) to extract
meaningful
spatio-temporal
features.

-- Features can include
RGB (appearance) and
multiple modalities like
optical flow, pose,
depth etc.

Step-2

/ Past Encoder: \

--With LSTM, GRU, TCN
or Transformers
encode the
spatio-temporal
dynamics of the past

" /

Step-3

/Uncertainty Encoder:\

--[Optional] Modify the
latent space of
observation to embed
the uncertainty
associated with the

\ibservation. /

Qtu re /

Unobserved Future —

Uncertainty 1
Embedded Feature

_,91_

S —

-




STEPS in Action Anticipation

Step-1 Step-2 Step-3 Step-4

/ Observation Frames\ / Past Encoder: \ /Uncertainty Encoder:\ / Future Decoder: \

Feature Extraction:

--With LSTM, GRU, TCN --[Optional] Modify the -- Predict the next
-- Use pre-trained or Transformers latent space of action based on
models (e.g., ResNet, encode the observation to embed observed features.
13D, or SlowFast spatio-temporal the uncertainty -- Predict intermediate
networks) to extract dynamics of the past associated with the states (e.g.,
meaningful observation. future subactions). First
spatio-temporal K / K / predict intermediate
features. steps, then the final

\a\ction. /

-- Features can include
RGB '(appearanFej) an.d e W] Fuliiie A?omaly(A)
multiple modalities like A
optical flow, pose, Uncertalnty .
depth etc. PRIA e I;:el:‘?(;:r tA]

" /

r-N T e —

: Anticipation :
2 . Queries (AQ) d

—




Let’'s See Few TOP Action Anticipation
Methods , Excited !



FUTR:

It is an an end-to-end attention neural network to
anticipate actions in parallel decoding, leveraging global
interactions between past and future actions for
long-term anticipation.

FUTR is composed of an encoder and a decoder; each
classifies action labels of past frames (action
segmentation) and anticipates future action labels and
corresponding durations (action anticipation),
respectively.

The encoder learns distinctive feature representation
from past actions via self-attention, and the decoder
learns long-term relations between past and future
actions via self-attention and cross-attention.

action segmentation

gpast

action anticipation

Sfuture

= SN
S S3 a, a, a; a,
X al' *S1 =52 53 =S4 =S5 P BTd, = BTd, i pTd, = BTd, g
S4 S5 S Ss Sc a,,d, a,d, a;d; a;ds; NONE
(XLE)1 (XLE)Z (XLE)3 (XLE)4 (XLE)s (QLD)1 (QLD)Z (QLD)3 (QL°)4 (QLD)S
t i t i t 1 1 1 i 1
encoder decoder
N . S S, I O, . T B
(Xo)1 || (Xo)z || (Xo)3 || (Xo)a4 || (Xo)s (Qo)1 || (Qo)z2 || (Qo)z || (Qo)s || (Qo)s
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{ SBBB B EN

-----------------------------------------------------



FUTR:

o . o ° o . 7 ~ a, dm
action segmentation action anticipation [7): position embeading A '
gpast gfuture : FC FC
DN ~N | @:action query A X
iy 51 S3 a, a, a; a, i @D :addition 0o
< >« L] L ] L] > “-"-““""“"S- ------------------- 2
af *Si=sus3=se=ss  BTd,  BTd, BTd; BTd, : - 5\
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A
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Key Contributions:

1. End-to-End Attention Network: FUTR employs a Transformer-based architecture that captures fine-grained temporal relations among observed frames,
facilitating effective long-term action anticipation.

2. Parallel Decoding: Unlike traditional autoregressive models that predict future actions sequentially, FUTR predicts the entire sequence of future actions in

parallel. This parallel decoding approach enhances both the accuracy and speed of inference, mitigating potential error accumulation inherent in
sequential predictions.

3. Integrated Action Segmentation Loss: The model incorporates an action segmentation loss during training to learn distinctive feature representations in
the encoder. This integration ensures that the encoder captures meaningful temporal features, improving the overall anticipation performance.



OADTR:

classifier #—

Drink 44—

’

Encoder = T

Multi-Head Self-Attention

Feature

Feature /
Extractor

/ Feature \
Extractor

/ Extractor

+ Positional Encoding

_’_ e ] e i

/ Feature \
Extractor

i

fo (yo=Drink)

(task token)
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TesTra: (Memory-based)

Encoder Decoder Q
N-< g—» — M-~ @ — —>M<§—' < —> : | | e Encoder: Compresses and abstracts
by <« B | _,’ s long-term memory by processing an
~ 7 .
l ’ ! L4 2 extended temporal window (e.g., 2048
M< Q) =—> M'< —p> | q - . .
€ - L% - — frames spanning up to 8 minutes),
& capturing coarse-scale historical
Long-term Memory Short-term Mem. Duration to Anticipate information.
History < Current » Future

e Decoder: Focuses on a short-term
Hiveistieating Wideo memory window (e.g., 32 frames
spanning 8 seconds), modeling

fine-scale characteristics through
o By epr|C|tIy dIVIdlng the entire history Into Iong-term and short-term self-attention and cross-attention

memories, it effectively captures temporal relations over prolonged mechanisms.
sequences while retaining fine granularity of events.

Separation of Long and Short-Term Memories:
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Motivation

e Offline or Online Anomaly Detection: Provides Investigative or Timely Intervention
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Future Anomaly Prediction: Provides Anomaly Preventive Measures (High Societal Impact)

Is it possible to predict all future anomalies? NOT
ALL but yes for Abnormal Human Behaviour

Why Abnormal Human Behaviour? Bcz human
interacts with the surrounding agents like objects,
other living entity etc.

So predicting future abnormal human behaviour is
possible by carefully analysing the early trends of
their interactions.

But how far can you predict the future?
m next 1 second (30 frames)

Case-1 ARREST: Human-to-Human Interaction

(a) Notice the various interaction in Abnormal Human
behaviours



Motivation

e Offline or Online Anomaly Detection: Provides Investigative or Timely Intervention
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Future Anomaly Prediction: Provides Anomaly Preventive Measures (High Societal Impact)

Is it possible to predict all future anomalies? NOT
ALL but yes for Abnormal Human Behaviour

Why Abnormal Human Behaviour? Bcz human
interacts with the surrounding agents like objects,
other living entity etc.

So predicting future abnormal human behaviour is
possible by carefully analysing the early trends of
their interactions.

But how far can you predict the future?
m next 2 seconds (60 frames)

Case-1 ARREST: Human-to-Human Interaction

(a) Notice the various interaction in Abnormal Human
behaviours



Motivation

e Offline or Online Anomaly Detection: Provides Investigative or Timely Intervention
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Future Anomaly Prediction: Provides Anomaly Preventive Measures (High Societal Impact)

Is it possible to predict all future anomalies? NOT
ALL but yes for Abnormal Human Behaviour

Why Abnormal Human Behaviour? Bcz human
interacts with the surrounding agents like objects,
other living entity etc.

So predicting future abnormal human behaviour is
possible by carefully analysing the early trends of
their interactions.

But how far can you predict the future?
m next 3 seconds (90 frames)

Case-1 ARREST: Human-to-Human Interaction

(a) Notice the various interaction in Abnormal Human
behaviours



Motivation

e Offline or Online Anomaly Detection: Provides Investigative or Timely Intervention
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Future Anomaly Prediction: Provides Anomaly Preventive Measures (High Societal Impact)

Is it possible to predict all future anomalies? NOT
ALL but yes for Abnormal Human Behaviour

Why Abnormal Human Behaviour? Bcz human
interacts with the surrounding agents like objects,
other living entity etc.

So predicting future abnormal human behaviour is
possible by carefully analysing the early trends of
their interactions.

But how far can you predict the future?
m next 4 seconds (120 frames)

Case-1 ARREST: Human-to-Human Interaction

(a) Notice the various interaction in Abnormal Human
behaviours



Motivation

e Offline or Online Anomaly Detection: Provides Investigative or Timely Intervention
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Future Anomaly Prediction: Provides Anomaly Preventive Measures (High Societal Impact)

Is it possible to predict all future anomalies? NOT
ALL but yes for Abnormal Human Behaviour

Why Abnormal Human Behaviour? Bcz human
interacts with the surrounding agents like objects,
other living entity etc.

So predicting future abnormal human behaviour is
possible by carefully analysing the early trends of
their interactions.

But how far can you predict the future?
m next 5 seconds (150 frames)

Case-1 ARREST: Human-to-Human Interaction

(a) Notice the various interaction in Abnormal Human
behaviours



Motivation

e Offline or Online Anomaly Detection: Provides Investigative or Timely Intervention
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Future Anomaly Prediction: Provides Anomaly Preventive Measures (High Societal Impact)

Is it possible to predict all future anomalies? NOT
ALL but yes for Abnormal Human Behaviour

Why Abnormal Human Behaviour? Bcz human
interacts with the surrounding agents like objects,
other living entity etc.

So predicting future abnormal human behaviour is
possible by carefully analysing the early trends of
their interactions.

But how far can you predict the future?
m next 8 seconds (240 frames)

Case-1 ARREST: Human-to-Human Interaction

(a) Notice the various interaction in Abnormal Human
behaviours



Motivation

e Offline or Online Anomaly Detection: Provides Investigative or Timely Intervention

e Future Anomaly Prediction: Provides Anomaly Preventive Measures (High Societal Impact)

e Isit possible to predict all future anomalies? NOT
ALL but yes for Abnormal Human Behaviour

Future Anomaly ( A)

e Why Abnormal Human Behaviour? Bcz human él; Unobserved Future — A
interacts with the surrounding agents like objects, Uncertainty Futur.
. : Embedded Feature uture "A’
other living entity etc. Decoder §
k1| Past w st A
- —_ i¥ | |Encoder G é " Anticipation |
e So predicting future abnormal human behaviour is — 97T | queries (AQ) !
possible by carefully analysing the early trends of (b) Our Idea to Model Uncertainty in Typical Encoder-Decoder
their interactions. Framework

e \What about Uncertainty between observation and
future event?



Detection Vs. Anticipation

Video Anomaly Detection Our Video Anomaly Anticipation
Anomaly Anticipation can Answer Past T Future = =
Questions like: (NI —— N PATNTN
e Whether an anomaly will occur E 3 | - ﬂ ﬂ 1
. f(e) G:(Xfw) |
in the near future? (Short e
AL
A“thlpatlon) @ @ @’l_é @ @@\ @ @ @\ Te1l o2 ieek:
o If yes, What kind of anomaly is o
: Past __ [curr|  Future oty
likely to occur? (Anomaly Class: NN [N A JATNIN ™
One can guess the seriousness of U H e ... ||[FENEESNEEREN
anomaly) | : i M ;*
¢ IS there d Chance Of B s 2 < Inference protocol of Long-Short
re-occurrence of the same © e @o@l i
anomaly in a future time Figure 2. Illustration VAD Vs. VAA: Suppose the current time
. P . - . step is t. For online VAD, a parametrized model f(#) can predict
window? (Long Anticipation). |

normal (N) or anomaly (A) for the current ¢ based on observed
time stamps £ —2...¢ — 1, {, where 7 represents the observed du-
ration. However, for our VAA we predict what kind of anomaly
will occur in the future marangeof [ £ + 1, f + 2...., t + K]
where k represents anticipation duration. Further, we comprehend
the short and long-term anticipation to identify the potential re-
occurrence of an anomaly in the long future.



SlaT:

e Two Key Modules of SlaT:
o Interaction Modules (T/O-1M)

-
I

o Normalcy Uncertainty Latent Learner 5 NULL .
I
- Bl ) | EE e ot
. . . j 'F J exal | .5V | B /\ K(Z-IM - Pt - g
e T/O-IM constitutes two identical modules | | 37 X /.é <N gl e Z
with different functionalities, : |2 kxad ,eT' ‘fg{ eiéé 2
o Temporal Interaction Module (TIM) and |~ ; rm ‘g)\g«ﬁ.) y =) O T e, et T §
Object Interaction Module (OIM) to : g I _:e Jg))' ufil | B
dissociatively capture the scene-level ; }t)(kexao 6 : t><k5><d°'\
global temporal interactions and : e S — e AU N
g
fi

object-level local spatial interaction.

R e e O i A o i i S s e A Sy i ol i
. . . : ssifier A

e NULL associates the interaction encoded | [Geniir 12 %, : T 1) - Feop Fearims
. . . i Concat . FFN A Pool
scene and object semantics by exploiting ! B : e o
. : : : e "'V @ — o | - _Add & Norm !
the inherent uncertainty associated with P / ) 2|1 || r———] |

1 t
normal observation to future AHB. | | £a0 i ﬁ € o v | e o) iindomenii |
: Df D D D D ID : X , . Product i
® NULL adjusts the flow of information from | Anticipation Queries (AQ) | f(x) , g(x) Where x e PomPIARONITE  fete 5
the past encoder to the future decoder by |  (b) Future Decoder 4 {co., #i., AU (c) Operators of (a) & (b) ;

learning latent features that are aligned
with future predictions.



Qualitative Results

Case-1 (Human-Human) Case-2 (Human-Object) Case-3 (Human-[Human&ObJect])
Obzervarion . ) Obzervation -3 : Observation . :
L=200 frame: L=200 frame: L=200 frames
TR § \ A - ' L romeogn, | ) | C.._..-.._‘
{ Normal — . [ Normal] I = INormal]
- 1s. 2s. . . S 1s. 2s. S. 8s. 1s. 2s. 3s.
o 6 ll]._ - GT: I--lii 3 oT I---__
< oaorr: [ (1] (N [ (] | oADTR: l--- o oaotr: [ [
2D FuTR: H-=:- Bl E FUTR: [ > | N
'~ LSTR: T & usr: :-- N .
£ sonoun: [ D | ] = sovom: [ 3
.~ Testra: [ [R/IENN | NN (N | 2 restea: [ [0 [ N
“osaam: I ] BN W B 7 smav: [ 0N |
Abuse CarryObject Hurt . Shoplifting
0 Arrest B Chasing Loitering B Stealing
Arson ©  Cycling S Panic | — Thiefling
B Assault I Destroy PlayingWithBall Vandalism
BagExchange Falling [m— Protest
B Banner BN Fighting r Robbery
: Burglary Hiding — Shooting
P campusAnomaly ‘

SlaTl is effective in most scenarios but faces challenges in highly complex or ambiguous cases.

S.Majhi Guess Future Anomalies from Normalcy
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